Rationalise the denominator 1/(√6-√3)
Answers
Question :-
Rationalize the denominator :
Answer :-
In order to rationalize the denominator, we have to multiply the numerator and denominator with the denominator's inverse such that, in the denominator :
(a-b)(a+b) = a² - b² product is formed.
- a = √6
- b = √3
The inverse is √6 + √3,
multiplying the numerator and the denominator with √6 + √3,
Applying (a-b)(a+b) = a² - b² identity in the denominator,
Identities :-
- (a + b)² = a² + 2ab + b²
- (a -b)² = a² - 2ab + b²
- a² - b² = (a-b)(a+b)
- (x+a)(x+b) = x² + x(a+b) + ab
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Conditional identity :
- If : a + b + c = 0, then a³ + b³ + c³ = 3abc
Step-by-step explanation:
Question :-
Rationalize the denominator :
Answer :-
In order to rationalize the denominator, we have to multiply the numerator and denominator with the denominator's inverse such that, in the denominator :
(a-b)(a+b) = a² - b² product is formed.
a = √6
b = √3
The inverse is √6 + √3,
multiplying the numerator and the denominator with √6 + √3,
Applying (a-b)(a+b) = a² - b² identity in the denominator,
Identities :-
(a + b)² = a² + 2ab + b²
(a -b)² = a² - 2ab + b²
a² - b² = (a-b)(a+b)
(x+a)(x+b) = x² + x(a+b) + ab
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - b³ - 3ab(a - b)
a³ + b³ = (a + b)(a² - ab + b²)
a³ - b³ = (a - b)(a² + ab + b²)
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Conditional identity :
If : a + b + c = 0, then a³ + b³ + c³ = 3abc