Math, asked by srishtikalani17, 10 months ago

Rationalise the denominator 1/√6+√5-√11

Answers

Answered by jtg07
7

Step-by-step explanation:

\green{question::}

rationalize \:  \frac{1}{ \sqrt{6}  +  \sqrt{5} -  \sqrt{11}  }

{here\:we\:go\:with\:the\:solution}

to \: rationalize \: we \: multiply \:  \\ the \: denominator \: at \: both \: sides

 \frac{1}{ \sqrt{6} +  \sqrt{5}  -  \sqrt{11}  }  \times  \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{ \sqrt{6}  +  \sqrt{5}  -  \sqrt{11} }  \\

 \frac{ \sqrt{6} +  \sqrt{5} +  \sqrt{11}   }{( { \sqrt{6 }+  \sqrt{5) } }^{2}  - ( {11)}^{2} }

 \frac{ \sqrt{6}  +  \sqrt{5}  +  \sqrt{11} }{(6 + 5 + 2 \sqrt{30}  - 11)}

 \frac{ \sqrt{6}  +  \sqrt{5}  +  \sqrt{11} }{2 \sqrt{30} }

again \: rationallizing

 \frac{ \sqrt{6} +  \sqrt{5}  +  \sqrt{11}  }{2 \sqrt{30} }  \times  \frac{ \sqrt{30} }{ \sqrt{30} }

 \frac{ \sqrt{180}  +  \sqrt{150}  +  \sqrt{330} }{60}

 \frac{6 \sqrt{5} + 5 \sqrt{6}  +  \sqrt{330}  }{60}

is \: your \: answer \\ thank \: you

Similar questions