Math, asked by avilash9, 9 months ago

rationalise the denominator
,1/√7+√6-√13​

Answers

Answered by aaryanpublicschool20
3

Answer:

This is your answer.

Step-by-step explanation:

Hope it's help you.

Attachments:
Answered by Anonymous
107

\qquad \tt\red{{ \dfrac{1}{ \sqrt{7}  +  \sqrt{6}  -  \sqrt{13} } }}

Let:-

\qquad☀️  \tt { \sqrt{7} + \sqrt{6} = a }

\qquad☀️  \tt {  \sqrt{13} = b }

\qquad❏ To rationalise the denominator, we'll have to multiply the denominator and the numerator by its rationalising factor. As we supposed (√7 + √6) as a and √13 as b, so the denominator is like ( a - b ). We know that rationalising factor of  \sf{ (a -b)} is  \sf { (a + b)} . Therefore, the rationalising factor of  \bigg ( \sf { \dfrac{1}{\sqrt{7}  +  \sqrt{6}  -  \sqrt{13}  } } \bigg ) is ( \sf { \sqrt{7}  +  \sqrt{6}  +  \sqrt{13}  } ).

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad\leadsto\quad \tt {  \dfrac{1}{ \sqrt{7} +  \sqrt{6}  -  \sqrt{13}   }  \times  \dfrac{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad\leadsto\quad \tt { \dfrac{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }{ { \big( \sqrt{7}  +  \sqrt{6} \big ) }^{2} -   {( \sqrt{ 13} )}^{2} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad(a - b)(a + b) = a² - b²

\qquad\leadsto\quad \tt { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{ {( \sqrt{7}) }^{2} +   { (\sqrt{6}) }^{2}  + 2(  \sqrt{7}   \times  \sqrt{6}  ) } -  {( \sqrt{13}) }^{2} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \qquad\leadsto\quad \tt { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{  7 +   6  + 2(  \sqrt{42}     )  - 13  } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \qquad\leadsto\quad \tt  { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{ \cancel{ 13} + 2(  \sqrt{42}     )  \cancel{- 13}  }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \qquad\leadsto\quad \tt { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{   2(  \sqrt{42}     )   }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad\leadsto\quad \tt { \dfrac{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}   }{   2(  \sqrt{42}     )   } \times  \dfrac{ \sqrt{42} }{ \sqrt{42} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad\leadsto\quad \tt  { \dfrac{  \sqrt{42}  (\sqrt{7} )+   \sqrt{42} (\sqrt{6} )+  \sqrt{42(}  \sqrt{13})   }{   \sqrt{42}  (2 \sqrt{42})  } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \qquad\leadsto\quad \tt { \dfrac{  \sqrt{294}  +  \sqrt{252}   + \sqrt{546}   }{   2 \times 42  } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad\leadsto\quad \tt { \dfrac{  \sqrt{294}  +  \sqrt{252}   + \sqrt{546}   }{   84} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad\leadsto\quad \tt   { \dfrac{  7\sqrt{6}  +  6\sqrt{7}   + \sqrt{546}   }{   84} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \qquad\leadsto\quad \tt { \dfrac{7\sqrt{6}}{84}  +   \dfrac{6\sqrt{7} }{84}  +  \dfrac{\sqrt{546}   }{   84} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \qquad\leadsto\quad \tt \red{\boxed{ \sf { \dfrac{\sqrt{6}}{12}  +   \dfrac{\sqrt{7} }{14}  +  \dfrac{\sqrt{546}   }{   84} }} }\\

Similar questions