Math, asked by Fungus12, 9 days ago

Rationalise the denominator:
10/
2√3−√2

Answers

Answered by NITESH761
0

Answer:

\Large \frac{20 \sqrt{3} + 10 \sqrt{2}  }{10}

Step-by-step explanation:

Given:-

\Large \frac{10}{2 \sqrt{3}  -  \sqrt{2} }

Solution:-

\Large \frac{10}{2 \sqrt{3} -  \sqrt{2}  } \times  \frac{2 \sqrt{3} +  \sqrt{2}  }{2 \sqrt{3}  +  \sqrt{2} }

\Large \frac{10(2 \sqrt{3}  +  \sqrt{2} )}{ {(2 \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }

\Large \frac{20 \sqrt{3}  + 10 \sqrt{2} }{12 - 2}

\Large \frac{20 \sqrt{3} + 10 \sqrt{2}  }{10}

hope it will helps you friend

Answered by llAngelsnowflakesll
18

Given:-

 \frac{10}{ 2\sqrt{3 - \:  \sqrt{2} } }  \times  \frac{ 2\sqrt{3}   \:  +  \sqrt{2} }{2 \sqrt{3}  +  \sqrt{2} }

To Assume:-

Rationalisation  \:  \: of \:  \: the \:  \:  denominator \\  \frac{10}{2 \sqrt{3} -  \sqrt{2}  }

Solution:-

 \frac{10}{ 2\sqrt{3 - \:  \sqrt{2} } }  \times  \frac{ 2\sqrt{3}   \:  +  \sqrt{2} }{2 \sqrt{3}  +  \sqrt{2} }  \\  \frac{10(2 \sqrt{3}  +  \sqrt{2}) }{(2 \sqrt {3}^{2})  -  (  \sqrt{2}  {}^{2}  }  \\  \frac{20 \sqrt{3} +  10 \sqrt{2}   }{12 - 2}  \\ \\     \frac{20 \sqrt{3} + 10  \sqrt{2} }{10}

So, the answer will be\frac{20 \sqrt{3} + 10  \sqrt{2} }{10}

Hope it helps u

Similar questions