Math, asked by Purvankit, 1 year ago

rationalise the denominator 14/5√3 - √5

Answers

Answered by Rythm14
314

Your answer is attached.

Attachments:
Answered by mysticd
256

Answer:

\frac{14}{5\sqrt{3}-\sqrt{5}}

=\frac{5\sqrt{3}+\sqrt{5}}{5}

Step-by-step explanation:

Given \frac{14}{5\sqrt{3}-\sqrt{5}}

Multiply numerator and denominator by 5\sqrt{3}+\sqrt{5} ,we get

=\frac{14(5\sqrt{3}+\sqrt{5})}{(5\sqrt{3}-\sqrt{5})(5\sqrt{3}+\sqrt{5})}

=\frac{14(5\sqrt{3}+\sqrt{5})}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}

/* By algebraic identity:

(a+b)(a-b)=-b² */

=\frac{14(5\sqrt{3}+\sqrt{5})}{75-5}

= \frac{14(5\sqrt{3}+\sqrt{5})}{70}

After cancellation, we get

= \frac{5\sqrt{3}+\sqrt{5}}{5}

Therefore,

\frac{14}{5\sqrt{3}+\sqrt{5}}

= \frac{5\sqrt{3}+\sqrt{5}}{5}

••••

Similar questions