Math, asked by mkc708, 1 year ago

rationalise the denominator :-
16/√41-5

Answers

Answered by mysticd
301
Given
16/(root41 - 5)
=16(root41+5)/[(root 41 -5)(root41+5)]
=[16(root41+5)]/[(root41)^2 -(5)^2]
=[16(root41+5)]/(41-25)
=16(root41+5]/16
=root41+5
Answered by athleticregina
339

Answer:

\frac{16}{\sqrt{41}-5}=(\sqrt{41}+5)

Step-by-step explanation:

Given: \frac{16}{\sqrt{41}-5}

WE have to rationalize the denominator.

Consider the given fraction  \frac{16}{\sqrt{41}-5}

Multiply and divide by (\sqrt{41}+5), we get,

\frac{16}{\sqrt{41}-5}\times \frac{\sqrt{41}+5}{\sqrt{41}+5}

Thus,

Denominator becomes (a+b)(a-b)=a^2-b^2

We have,

(\sqrt{41}+5)(\sqrt{41}-5)=(\sqrt{41})^2-5^2=41-25=16

Thus, \frac{16}{\sqrt{41}-5}\times \frac{\sqrt{41}+5}{\sqrt{41}+5}=\frac{16(\sqrt{41}+5)}{16}=(\sqrt{41}+5)

Thus, \frac{16}{\sqrt{41}-5}=(\sqrt{41}+5)

Similar questions