Math, asked by ItzUrTanu, 1 month ago

Rationalise the denominator √2/√2+√3-√5​

Attachments:

Answers

Answered by itsPapaKaHelicopter
2

Answer:-

 \frac{ \sqrt{2} }{ \sqrt{2}  +  \sqrt{3}  -  \sqrt{5} }  =  \frac{ \sqrt{2} }{( \sqrt{2}  +  \sqrt{3} ) -  \sqrt{5} }  \times  \frac{( \sqrt{2}  +  \sqrt{3})  +  \sqrt{5} }{( \sqrt{2}  +  \sqrt{3}) +  \sqrt{5}  }

 ⇒ \frac{ \sqrt{2}( \sqrt{2}  +  \sqrt{3} +  \sqrt{2} \times  \sqrt{5}    }{( \sqrt{2} +  \sqrt{3}   {)}^{2}  - ( \sqrt{5} {)}^{2}  }

⇒ \frac{2 +  \sqrt{6}  +  \sqrt{10} }{2 + 3 + 2 \sqrt{6} - 5  }

⇒ \frac{2 +  \sqrt{6}  +  \sqrt{10} }{2 +  \sqrt{6} }

⇒ \frac{2 +  \sqrt{6} +  \sqrt{10}  }{2 \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }

⇒ \frac{2 \sqrt{6}  + 6 +  \sqrt{60} }{2 \times 6}

⇒ \frac{2( \sqrt{6} + 3 +  \sqrt{15}  }{2 \times 6}

⇒ \frac{3 +  \sqrt{6}  +  \sqrt{15} }{6}

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ⌨}

Similar questions
Math, 9 months ago