Math, asked by aaron9116, 1 month ago

rationalise the denominator 2+√3/2-√3

Answers

Answered by balvirkaur723
4

Step-by-step explanation:

Pls mark me as brainlist

Attachments:
Answered by spacelover123
8

Question

Rationalise the denominator → \dfrac{2+\sqrt{3}}{2-\sqrt{3}}

____________________________

Answer

So to rationalize the given number, we must multiply the numerator and denominator with the conjugate of the denominator. So the conjugate of 2 - √3 would be 2 + √3

\sf \implies \dfrac{2+\sqrt{3}}{2-\sqrt{3}} \times \dfrac{2+\sqrt{3}}{2+\sqrt{3}}

\sf \implies \dfrac{(2+\sqrt{3})^{2} }{(2-\sqrt{3})(2+\sqrt{3})  }

Now we have to apply two algebraic identities for the numerator and denominator, respectively.

  • (a + b)² = a² + 2ab + b²
  • (a + b)(a - b) = a² - b²

\sf \implies \dfrac{(2+\sqrt{3})^{2} }{(2-\sqrt{3})(2+\sqrt{3})  }

\sf \implies \dfrac{(2)^{2}+2(2)(\sqrt{3})+(\sqrt{3})^{2}  }{(2)^{2}-(\sqrt{3})^{2} }

\sf \implies \dfrac{4+4\sqrt{3}+3  }{4-3 }

\sf \implies \dfrac{7+4\sqrt{3}  }{1 }

\sf \implies 7+4\sqrt{3}

∴ Upon rationalizing the denominator of \bf \dfrac{2+\sqrt{3}}{2-\sqrt{3}} we get 7 + 4√3.

____________________________

Similar questions