Math, asked by lol1532, 9 months ago

Rationalise the denominator

Attachments:

Answers

Answered by yakubshakirafarheen
1

Step-by-step explanation:

the answers are

1.√45/3

2.-(3√4+√6/15)

Attachments:
Answered by purveshKolhe
2

\bf{\underline{Answer::}}

(i) \dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{5}-\sqrt{2}}

\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{5}-\sqrt{2}}  \times \dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}

\dfrac{\sqrt{2}(\sqrt{5}+\sqrt{2})+\sqrt{3}(\sqrt{5}+\sqrt{2})}{\sqrt{5}^{2}-\sqrt{2}^{2}}

\dfrac{(\sqrt{10}+4)+(\sqrt{15}+\sqrt{6})}{5-2}

\dfrac{\sqrt{10}+4+\sqrt{15}+\sqrt{6}}{3}

(ii) \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{3}- 3 \sqrt{2}}

\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{3}- 3 \sqrt{2}} \times \dfrac{\sqrt{3}+ 3 \sqrt{2}}{\sqrt{3}+ 3 \sqrt{2}}

\dfrac{\sqrt{5}(\sqrt{3}+ 3 \sqrt{2})-\sqrt{3}(\sqrt{3}+ 3 \sqrt{2})}{\sqrt{3}^{2}- (3 \sqrt{2})^{2}}

\dfrac{(\sqrt{15}+ 3 \sqrt{10})-(3+ 3 \sqrt{6})}{3- 18}

\dfrac{(\sqrt{15}+ 3 \sqrt{10})-(3+ 3 \sqrt{6})}{-15}

Similar questions