Math, asked by btsarmy109, 7 months ago

rationalise the denominator ​

Attachments:

Answers

Answered by ravi2303kumar
0

Answer:

\frac{a-\sqrt{a^2-x^2} }{x}

Step-by-step explanation:

\frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}}

= \frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}}  * \frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} - \sqrt{a-x}}

= { \frac{(\sqrt{a+x} - \sqrt{a-x})) ^2} {(\sqrt{a+x} + \sqrt{a-x}) (\sqrt{a+x} - \sqrt{a-x})} }

= { \frac{(\sqrt{a+x})^2 - 2 ( \sqrt{a+x})  ( \sqrt{a-x}) + ( \sqrt{a-x})^2 } {(\sqrt{a+x})^2 - ( \sqrt{a-x})^2 } }

= { \frac{ {a+x} - 2 ( \sqrt{(a+x)(a-x)} + {a-x} }{  (a+x) - ( {a-x}) } }

= { \frac{ {2a} - 2 ( \sqrt{(a^2-x^2)} }{  2x } }

= \frac{2 (a-\sqrt{a^2-x^2}) }{2x}

= \frac{a-\sqrt{a^2-x^2} }{x}    , here the denominator is rationalised

Similar questions