Math, asked by sinkdhasaha16, 5 months ago

rationalise the denominator 3√2/√15+3√2​

Answers

Answered by Anonymous
17

Solution:-

 \rm \:  :  \implies \dfrac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  }

For rationalize multiply and divide by :- √15 - 3√2

\rm \:  :  \implies \dfrac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  }  \times  \dfrac{ \sqrt{15}  - 3 \sqrt{2} }{ \sqrt{15} - 3 \sqrt{2}  }

 \rm  : \implies \dfrac{3 \sqrt{2}( \sqrt{15} - 3 \sqrt{2}   )}{ (\sqrt{15}{}   - 3 \sqrt{2}  )( \sqrt{15}  + 3 \sqrt{2}) }

 \rm :  \implies \:  \dfrac{3 \sqrt{30}  - (3 \sqrt{2} ) {}^{2} }{( \sqrt{15} )^{2} - (3 \sqrt{2} ) {}^{2}  }

 \rm :  \implies \:  \dfrac{3 \sqrt{30} - 9 \times 2 }{15 - 9 \times 2}

 \rm :  \implies \dfrac{3 \sqrt{30}  - 18}{15 - 18}

  : \implies \dfrac{3 \sqrt{30} - 18 }{ - 3}

 \rm :  \implies \dfrac{ - 3( \sqrt{30}  - 6)}{3}

 \rm   \rm :  \implies \dfrac{ -  \not3( \sqrt{30}  - 6)}{ \not3}

Answer is

 \rm \:  \to \:   - (\sqrt{30}  - 6)

Similar questions