Math, asked by raghavs2964, 1 year ago

Rationalise the denominator 3/2-√3

Answers

Answered by Anonymous
4

HEYA \:  \\  \\ GIVEN \: QUESTION \: Is \:  \\  \\  \frac{3}{2 -  \sqrt{3} }  \\  \\ multiply \: Numerator \:  \: and \:  \: Denominator \:  \\  \: by \:  \: 2 +  \sqrt{3}  \\  \\  \frac{3}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  \frac{3(2 +  \sqrt{3}) }{2 {}^{2} - ( \sqrt{3} ) {}^{2}  }  \:  \:  \:  \:  \:  \\  \\  \frac{6 + 3 \sqrt{3} }{4 - 3}  \\  \\  \frac{6 + 3 \sqrt{3} }{1}  \\  \\  = 6 + 3 \sqrt{3}

Answered by Anonymous
2

Step-by-step explanation:

\begin{lgathered} \frac{3}{2 - \sqrt{3} } \\ \\ Multiply \: Numerator \: \: And \: \: Denominator \: \\ \: By \: \: 2 + \sqrt{3} \\ \\ \frac{3}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ \\ \frac{3(2 + \sqrt{3}) }{2 {}^{2} - ( \sqrt{3} ) {}^{2} } \: \: \: \: \: \\ \\ \frac{6 + 3 \sqrt{3} }{4 - 3} \\ \\ \frac{6 + 3 \sqrt{3} }{1} \\ \\ = 6 + 3 \sqrt{3}\end{lgathered} </p><p>

Similar questions