Math, asked by alsoong3, 3 months ago

Rationalise the denominator:

√3 +√2/√3 -√2

[Answer: 5+2√6]​

Answers

Answered by anindyaadhikari13
8

Required Answer:-

Given To Rationalise:

  • \tt \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2}}

Solution:

Given,

\tt =  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2}}

Multiplying numerator and denominator by (√3 + √2), we get,

\tt =  \dfrac{ (\sqrt{3}  +  \sqrt{2})( \sqrt{3} +  \sqrt{2} )}{(\sqrt{3}  -  \sqrt{2})( \sqrt{3} +  \sqrt{2})}

Using identity a² - b² = (a + b)(a - b), we get,

\tt =  \dfrac{ (\sqrt{3}  +  \sqrt{2})( \sqrt{3} +  \sqrt{2} )}{(\sqrt{3})^{2} -  (\sqrt{2})^{2} }

\tt =  \dfrac{ (\sqrt{3}  +  \sqrt{2})( \sqrt{3} +  \sqrt{2} )}{3 - 2}

\tt =  \dfrac{ (\sqrt{3}  +  \sqrt{2})( \sqrt{3} +  \sqrt{2} )}{1}

\tt = (\sqrt{3}  +  \sqrt{2})( \sqrt{3} +  \sqrt{2} )

\tt = (\sqrt{3}  +  \sqrt{2})^{2}

Using identity (a + b)² = a² + 2ab + b², we get,

\tt = (\sqrt{3})^{2}  +  (\sqrt{2})^{2}  + 2 \times  \sqrt{3 \times 2}

\tt =3 + 2+ 2\sqrt{6}

\tt =5 + 2\sqrt{6}

★ Therefore, result obtained after rationalisation is - 5 + 2√6.

Answer:

  • 5 + 2√6
Similar questions