Math, asked by rishav61, 1 year ago

rationalise the denominator 3/√3+√5-√2

Answers

Answered by DelcieRiveria
181

Answer:

The simplified form is \frac{\sqrt{3}}{2}-\frac{3\sqrt{2}}{4}+\frac{\sqrt{30}}{4}.

Step-by-step explanation:

The given expression is

\frac{3}{\sqrt{3}+\sqrt{5}-\sqrt{2}}

Rationalize the denominator.

\frac{3}{(\sqrt{3}+\sqrt{5})-\sqrt{2}}\times \frac{(\sqrt{3}+\sqrt{5})+\sqrt{2}}{(\sqrt{3}+\sqrt{5})+\sqrt{2}}

\frac{3(\sqrt{3}+\sqrt{5})+3\sqrt{2}}{(\sqrt{3}+\sqrt{5})^2-(\sqrt{2})^2}

\frac{3\sqrt{3}+3\sqrt{5}+3\sqrt{2}}{3+5+2\sqrt{15}-2}

\frac{3\sqrt{3}+3\sqrt{5}+3\sqrt{2}}{6+2\sqrt{15}}

Rationalize the denominator.

\frac{3(\sqrt{3}+\sqrt{5}+\sqrt{2})}{6+2\sqrt{15}}\times \frac{6-2\sqrt{15}}{6-2\sqrt{15}}

\frac{3(\sqrt{3}+\sqrt{5}+\sqrt{2})(6-2\sqrt{15})}{6^2-(2\sqrt{15})^2}

\frac{3(\sqrt{3}+\sqrt{5}+\sqrt{2})(6-2\sqrt{15})}{36-60}

\frac{3(\sqrt{3}+\sqrt{5}+\sqrt{2})(6-2\sqrt{15})}{-24}

-\frac{(\sqrt{3}+\sqrt{5}+\sqrt{2})(6-2\sqrt{15})}{8}

\frac{\sqrt{3}}{2}-\frac{3\sqrt{2}}{4}+\frac{\sqrt{30}}{4}

Therefore the simplified form is \frac{\sqrt{3}}{2}-\frac{3\sqrt{2}}{4}+\frac{\sqrt{30}}{4}.

Answered by craziede
14

Step-by-step explanation:

thankyou

myself

Ashakiran from class 9

Attachments:
Similar questions