Math, asked by sumanyadav41630, 7 hours ago

rationalise the denominator 3/4√5-√3+2/4√5+√7

Answers

Answered by Anonymous
61

 \huge\mathtt\red{answer :  - }

____________________

 \to \: {\mathtt{\frac{3}{4}  \sqrt{5}  -  \sqrt{ \frac{3 + 2}{4} }  \sqrt{5}  +  \sqrt{7} }}

 \to {\mathtt{ \frac{3}{4} \sqrt{5}   -   \sqrt{ \frac{5}{4}} \sqrt{5} +  \sqrt{7}  }}

 \to \: \mathtt{ \frac{3}{4} \sqrt{5}  -  \frac{ \sqrt{ 5}}{ \sqrt{4} }  \sqrt{5} +  \sqrt{7}   }

 \to \mathtt{ \frac{3}{4}  \sqrt{5} -  \frac{ \sqrt{5} }{2}  \sqrt{5} +  \sqrt{7}   }

 \to \mathtt{ \frac{3}{4}  \sqrt{5} -  \frac{ \sqrt{5}  \sqrt{5} }{5}  } +  \sqrt{7}

 \to \mathtt \red{ \frac{3}{4} \sqrt{5} -  \frac{5}{2} \sqrt{7}    }

____________________

Therefore:-

 \to \mathtt \red{ \frac{3}{4} \sqrt{5} -  \frac{5}{2} \sqrt{7}    }

Answered by 231001ruchi
2

Answer:

→435−43+25+7

\to {\mathtt{ \frac{3}{4} \sqrt{5} - \sqrt{ \frac{5}{4}} \sqrt{5} + \sqrt{7} }}→435−455+7</p><p>\to \: \mathtt{ \frac{3}{4} \sqrt{5} - \frac{ \sqrt{ 5}}{ \sqrt{4} } \sqrt{5} + \sqrt{7} }→435−455+7</p><p>\to \mathtt{ \frac{3}{4} \sqrt{5} - \frac{ \sqrt{5} }{2} \sqrt{5} + \sqrt{7} }→435−255+7</p><p>\to \mathtt{ \frac{3}{4} \sqrt{5} - \frac{ \sqrt{5} \sqrt{5} }{5} } + \sqrt{7}→435−555+7</p><p>\to \mathtt \red{ \frac{3}{4} \sqrt{5} - \frac{5}{2} \sqrt{7} }→43

____________________

Therefore:-

\to \mathtt \red{ \frac{3}{4} \sqrt{5} - \frac{5}{2} \sqrt{7} }→435−257

Similar questions