Math, asked by xyz2838, 4 months ago

rationalise the denominator​

Attachments:

Answers

Answered by guptavishrut
2

Answer:

5-√21/4

Step-by-step explanation:

PLS REFER TO THE GIVEN  ATTACHMENT

PLS MARK ME AS BRAINLIEST IF YOU LIKED TH EXPLANATION OF THE ANSWER AND IF THE ANSWER IS CORRECT

Attachments:
Answered by PhoenixAnish
6

\huge{\fcolorbox{plum}{Lime}{Answer}}

\huge\mathbb\color{aqua} GIVEN:

⇒\frac{ \sqrt{7}  \:  -  \sqrt{3} }{ \sqrt{7}  +  \sqrt{3} }  \\

\huge\mathcal\color{Lime}FIND:

\mathcal\color{Lightpink}rationalize\: denominator

\huge\mathcal\orange{multipying\:with\:conjugate\:pair}

⇒ \frac{ \sqrt{7}  -  \:  \sqrt{ 3} }{ \sqrt{7}  +  \sqrt{3} }  \times  \frac{ \sqrt{7} -  \sqrt{3}  }{ \sqrt{7} -  \sqrt{3}  }  \\  \\

\huge\mathcal\pink{★by\:using\:formulae★}

★ (a + b) (a – b) = a² – b² ★

★ (a – b)² = a² – 2ab + b² ★

⇒ \frac{( \sqrt{7}  -  \sqrt{3})  ^{2}   }{ { (\sqrt{7}) }^{2} -  ( \sqrt{3})^{2}  }  \\

⇒ \frac{( \sqrt{7})^{2} -  \: 2( \sqrt{7}  \times  \sqrt{3} )  \:  + ( \sqrt{3} )^{2}   }{( \sqrt{7} )^{2}  -   ( \sqrt{3} )^{2}  }  \\

⇒ \frac{ 7 \:  -   \: 2\sqrt{21}   \: + \:  3 }{7 \:  -  \: 3}  \\  \\

⇒ \frac{10  \:  - 2 \sqrt{21} }{4}  \:  \:  \\  \\

⇒ \frac{2 \:  (5 \: - \sqrt{21} )}{4}  \\  \\

⇒ \frac{\: 5 \:  -  \sqrt{21}}{2}   \\  \\

\huge\mathcal\color{plum}I\:hope\:it\:helps\:you.

Similar questions