Math, asked by nareshprasadcbsa, 3 months ago

rationalise the denominator ​

Attachments:

Answers

Answered by Salmonpanna2022
2

Answer:

1.

Step-by-step explanation:

Given that:

 \tt{ \frac{7 \sqrt{3} }{ \sqrt{10}  +  \sqrt{3} }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5}  } -   \frac{3 \sqrt{2} }{ \sqrt{15}  + 3 \sqrt{2} } } \\  \\

What to do:

To simplify

Solution:

We have,

 \tt{ \frac{7 \sqrt{3} }{ \sqrt{10}  +  \sqrt{3} }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5}  } -   \frac{3 \sqrt{2} }{ \sqrt{15}  + 3 \sqrt{2} } } \\  \\

⟹  \tt{\frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  \times  \frac{ \sqrt{10} -  \sqrt{3}  }{ \sqrt{10} -  \sqrt{3}  }  - \frac{2 \sqrt{5} }{ \sqrt{6} +  \sqrt{5}  }   \times  \frac{ \sqrt{6}  -  \sqrt{5} }{ \sqrt{6 } -  \sqrt{5}  }  -  \frac{3 \sqrt{2} }{ \sqrt{15}  + 3 \sqrt{2} }  \times  \frac{ \sqrt{15}  - 3 \sqrt{2} }{ \sqrt{15} - 3 \sqrt{2}  } } \\  \\

⟹  \tt{\frac{7 \sqrt{3} ( \sqrt{10} -  \sqrt{3} ) }{10 - 3}  -  \frac{2 \sqrt{5}( \sqrt{6}  -  \sqrt{5})  }{6 - 5}  -  \frac{3 \sqrt{2} {( \sqrt{ 15 }} -3 \sqrt{2})  }{15 - 18} } \\  \\

⟹  \tt{\sqrt{3} ( \sqrt{10}  -  \sqrt{3}) - 2 \sqrt{5}  ( \sqrt{6}  -  \sqrt{5} ) +  \sqrt{2} ( \sqrt{15}  - 3 \sqrt{2} )} \\  \\

⟹  \tt{\sqrt{30}  - 3 - 2 \sqrt{30}  + 10 +  \sqrt{30}  - 6} \\  \\

⟹ \tt{ \cancel{2 \sqrt{30} } - 9  \cancel {- 2 \sqrt{30}}  + 10} \\  \\

⟹ \tt{ - 9 + 10} \\  \\

⟹ \tt{1 \:  \: ans.}

Answered by vaishnavisinghscpl45
1

1 is the answer of your question

Similar questions