Math, asked by swetha11, 1 year ago

Rationalise the denominator 4 / √7 +√3

Answers

Answered by gayatrikumari99sl
8

Answer:

\sqrt{7} - \sqrt{3} is the required answer .

Step-by-step explanation:

Explanation:

Given , \frac{4}{\sqrt{7} + \sqrt{3}  }

So the  denominator is \sqrt{7} + \sqrt{3} given ,

Therefore , the conjugate of \sqrt{7} + \sqrt{3} is \sqrt{7} - \sqrt{3}.

Conjugate ,a mathematical value or entity having a reciprocal relation with another.

Step 1:

We have , \frac{4}{\sqrt{7} + \sqrt{3}  }

Now ,we multiply  both denominator and numerator by  \sqrt{7} - \sqrt{3}.

\frac{4}{\sqrt{7} + \sqrt{3}  }× \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} - \sqrt{3}}

\frac{4(\sqrt{7} - \sqrt{3})}{(\sqrt{7} )^{2}  -(\sqrt{3} )^{2} }            [∴a^{2} -b^{2}  = (a-b)(a+b)]

\frac{4(\sqrt{7} - \sqrt{3})}{7-3 } = \frac{4(\sqrt{7} - \sqrt{3})}{4 }

\sqrt{7} - \sqrt{3}

Final answer :

Hence , \sqrt{7} - \sqrt{3} is the answer .

#SPJ2

Similar questions