Math, asked by gauri4013, 2 months ago

rationalise the denominator ☝​

Attachments:

Answers

Answered by njan7312
0

Step-by-step explanation:

(√3-1)/(√3+1)

=(√3-1)/(√3+1)×(√3-1)/(√3-1)

=(4-2√3)/2

=2-√3

Answered by KnowtoGrow
2

Answer: = 2 - \sqrt{3}

Solution:

=\frac{ \sqrt{3} - 1  }{\sqrt{3} + 1 } X \frac{\sqrt {3}-1}{\sqrt{3}-1 }

= \frac{(\sqrt{3} -1) (\sqrt{3} -1)  }{(\sqrt{3} + 1)(\sqrt{3} -1) }

= \frac{(\sqrt{3} -1)^2 }{(\sqrt{3})^2 - (1)^2 }                          

Identities: [(a - b)² = (a - b) (a - b)] [ a² - b² = (a + b)(a - b) ]

= \frac{(\sqrt{3})^2- 2 (\sqrt{3})(1) + (1)^2}{3 -1 }

= \frac{3 - 2\sqrt{3}+ 1}{2}

= \frac{4-2\sqrt{3}}{2}

= \frac{2 (2 -\sqrt{3})}{2}

= 2 - \sqrt{3}

Hope you understood.

Thank You.

Similar questions