Math, asked by Sagar027, 1 year ago

Rationalise the denominator

Attachments:

Answers

Answered by ashajangra82
2
rationalise the three terms individually

Sagar027: i wouldn't found this helpful actually i needed the answer...Can u solve it for me?
ashajangra82: oh..
Answered by MissMelophile
24

ϲοиѕι∂єя єգ (1) , єգ (2) αи∂ єգ(3)

 \frac{ \sqrt[2]{6} }{ \sqrt{2} +  \sqrt{3}  }  +  \frac{ \sqrt[6]{2} }{ \sqrt{6 +  \sqrt{3} }  }   -   \frac{ \sqrt[8]{3} }{ \sqrt{6} +  \sqrt{2}  }

єգ ( 1 )

 \frac{ \sqrt[2]{6} }{ \sqrt{2}  +  \sqrt{3} }  \times   \frac{ \sqrt{2 -  \sqrt{3} } }{ \sqrt{2 -  \sqrt{3} } }

 \frac{2  \sqrt{6} {( \sqrt{2 -  \sqrt{3}) } } }{ \sqrt{ {2}^{2}  } -   \sqrt{ {3}^{2} }  }  =  \frac{ \sqrt[2]{6}( \sqrt{2} -  \sqrt{3})   }{2 - 3}

 \frac{ \sqrt{6}( \sqrt{2}  -  \sqrt{3} )}{3}  =  \frac{ \sqrt{12}  -  \sqrt{18} }{3}

ѕιмιℓαяℓγ.........

єգ(2)

 \frac{ \sqrt{12}  -  \sqrt{6} }{3}

(єգ 3)

 \frac{ \sqrt[8]{18} -  \sqrt[8]{24}  }{4}

ρυττιиg єg (1),(2) αи∂ (3) τοgєτнєя

 \frac{ \sqrt{12}  -  \sqrt{18} }{3} +  \frac{ \sqrt{12} -  \sqrt{6}  }{3}  -  \frac{ \sqrt[8]{18}  -  \sqrt[8]{24} }{4}

✯ нορє γου ℓικє ιτ

✯ɦσρε ყσµ ℓเҡε เƭ☺_____________♡______________

❥ᵐⁱᶻᶻиαи∂ιиι_♫♪

_____________♡______________

Similar questions