Math, asked by sg123648250, 1 month ago

rationalise the denominator ​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution in

pls mark it as brainliest pls

Step-by-step explanation:

 \frac{5 -  \sqrt{27} }{ \sqrt{ 3} +  \sqrt{5}  } \\   \\ so \: conjugate \: of \:  \sqrt{3}  +  \sqrt{5}  \: \:  is \:  \:  \sqrt{3}  -  \sqrt{5}  \\ so \: rationalising \: denominator \\ we \: get \\  \\  =  \frac{5 -  \sqrt{27} }{ \sqrt{3} +  \sqrt{5}  }  \:  \times  \frac{ \sqrt{3}  -  \sqrt{5} }{ \sqrt{ 3}  -  \sqrt{5} }  \\   \\ =  \frac{5 - 3 \sqrt{3} }{ \sqrt{ 3} +  \sqrt{5}  }  \:  \times  \frac{ \sqrt{3}  -  \sqrt{5}  }{ \sqrt{3}  -  \sqrt{5} }  \\  \\  =  \frac{(5 - 3 \sqrt{3} )( \sqrt{3}  -  \sqrt{5} )}{( \sqrt{3}) {}^{2}  \:  -  ( \sqrt{5} ) {}^{2} }  \\  \\  =  \frac{5 \sqrt{3}  - (3 \sqrt{3} \times  \sqrt{3} ) - 3 \sqrt{3}.( -  \sqrt{5}  ) - 5 \sqrt{5}  }{(3 - 5)}  \\  \\  =  \frac{5 \sqrt{ 3} - (3 \times 3)  + 3 \sqrt{15} - 5 \sqrt{5}  }{( - 2)}  \\  \\  =  \frac{5 \sqrt{3} - 9 + 3 \sqrt{15}  - 5 \sqrt{5}  }{( - 2)}  \\  \\  =  \frac{ - (5 \sqrt{3} + 3 \sqrt{15}  - 5 \sqrt{5} + 9)  }{2}

Similar questions