Math, asked by smagwl2005, 3 months ago

rationalise the denominator √5-√6/√5+√6​

Answers

Answered by vipashyana1
1

Answer:

 \frac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5} +  \sqrt{6}  }  = 11 + 2 \sqrt{30}

Step-by-step explanation:

 \frac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5} +  \sqrt{6}  }  \\  =  \frac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5} +  \sqrt{6} }  \times  \frac{ \sqrt{5} -  \sqrt{6}  }{ \sqrt{5} -  \sqrt{6}  }  \\  =  \frac{ {( \sqrt{5} -  \sqrt{6} ) }^{2} }{ {( \sqrt{5}) }^{2} -  {( \sqrt{6}) }^{2}  }  \\  =  \frac{ {( \sqrt{5}) }^{2} +  {( \sqrt{6}) }^{2}  - 2( \sqrt{5} )( \sqrt{6}) }{ {( \sqrt{5} )}^{2} -  {( \sqrt{6}) }^{2} }  \\  =  \frac{5 + 6 - 2 \sqrt{30} }{5 - 6}  \\   =  \frac{11 - 2 \sqrt{30} }{( - 1)}  \times  \frac{( - 1)}{( - 1)}  \\  =  \frac{ - (11 - 2 \sqrt{30} )}{1}  \\  =  - (11 - 2 \sqrt{30} ) \\  = 11 + 2 \sqrt{30}

Similar questions