Math, asked by neha2649, 1 year ago

Rationalise the denominator

Attachments:

Answers

Answered by Anonymous
16
<b><i><u>
Heya



(6 - 4√3)/(6 + 4√3)

 =  \frac{6 - 4 \sqrt{3} }{6  + 4 \sqrt{3} }  \times  \frac{6 - 4 \sqrt{3} }{6 - 4 \sqrt{3} }  \\  \\  =  \frac{ ({6 - 4 \sqrt{3} )}^{2} }{(6 + 4 \sqrt{3})(6 - 4 \sqrt{3})  }  \\  \\  =  \frac{ {(6)}^{2}  +  {(4 \sqrt{3}) }^{2}  - 2(6)(4 \sqrt{3}) }{ {(6)}^{2}  -  {(4 \sqrt{3}) }^{2} }  \\  \\  =  \frac{36 + 48 - 48 \sqrt{3} }{36 - 48}  \\  \\  =  \frac{84 - 48 \sqrt{3} }{ - 12}  \\  \\  =  \frac{ - (84 - 48 \sqrt{3}) }{12}  \\  \\  =  \frac{48 \sqrt{3}  - 84}{12}  \\  \\  =  \frac{12(4 \sqrt{3} - 7) }{12}  \\  \\  = 4 \sqrt{3}  - 7



<b><marquee>

Identities used :-

(a - b)^2 = a^2 + b^2 - 2ab

(a + b)(a - b) = a^2 - b^2



Hope this helps you.
Answered by Anonymous
2

HEYA. MATE

YOUR ANSWER

 \frac{6 \:  - \:  4 \sqrt{3} }{6 + 4 \sqrt{3} }  = \\  \\  =  \geqslant  \frac{6 - \sqrt[4]{3} }{6 +  \sqrt[4]{3} }  \:  \:  \times  \:  \frac{6 -  \sqrt[4]{3} }{6 -  \sqrt[4]{3} }  \\  \\  =  \geqslant   \frac{(6 -  \sqrt[4]{3) {}^{2} } }{(6) {}^{2} \:  - ( \sqrt[4]{3 }) {}^{2}   }  \\  \\  =  \geqslant  \frac{ {(6)}^{2} \: + ( \sqrt[4]{3}  ) {}^{2}  - 2 \times 6 \times  \sqrt[4]{3}  }{36 - 48}  \\  \\  =  \geqslant  \frac{36 + 48 - 48 \sqrt{3} }{ - 12}  \\  \\  =  \geqslant  \frac{36 \sqrt{3} }{ - 12}  \\  \\  =  \geqslant  - 3 \sqrt{3} answer

Similar questions