Math, asked by anadimishra2006, 7 months ago

Rationalise the denominator
(6+4√3)/(6-4√3)

Answers

Answered by Asterinn
7

We have to rationalise the denominator of the following expression :-

\implies \dfrac{6 + 4 \sqrt{3} }{6  -  4 \sqrt{3}}

To rationalise the denominator multiply numerator and denominator by 6 + 4 √3 :-

\implies \dfrac{6 + 4 \sqrt{3} }{6  -  4 \sqrt{3}}  \times \dfrac{6 + 4 \sqrt{3} }{6   + 4 \sqrt{3}}

\implies \dfrac{   (6 + 4 \sqrt{3}) (6 + 4 \sqrt{3})}{(6 -  4 \sqrt{3} )(6   + 4 \sqrt{3})}

We know that :-

  • (a+b) (a+b) = (a+b)²

  • (a+b) (a-b) = a²-b²

\implies \dfrac{ {(6 + 4 \sqrt{3})}^{2}  }{( {(6)}^{2}  - {(4 \sqrt{3} )}^{2} }

\implies \dfrac{ { {(6)}^{2}  +(4 \sqrt{3} )}^{2}  + 2.6.4 \sqrt{3}}{( {(6)}^{2}  - {(4 \sqrt{3} )}^{2} }

\implies \dfrac{36 + 48 + 48 \sqrt{3} }{36 - 48}

\implies \dfrac{84 + 48 \sqrt{3} }{ - 12}

Taking out 12 as common from numerator :-

\implies \dfrac{12(7 + 4 \sqrt{3}) }{ - 12}

Now cancel out 12 from numerator and denominator :-

\implies \dfrac{ - 1(7 + 4 \sqrt{3}) }{ 1}

Therefore we get :-

\implies  - 1(7 + 4 \sqrt{3})

\implies  - 7  - 4 \sqrt{3}

Answer :

 - 7  - 4 \sqrt{3}

Similar questions