Math, asked by aditya4grawal, 11 months ago

Rationalise the denominator :
7 + 3√5/7 - 3√5

Answers

Answered by Anonymous
20

 \sf \implies \frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }  \\  \\  \sf \implies  \frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }   \times  \frac{7  +  3 \sqrt{5}}{7  + 3 \sqrt{5}}  \\  \\ \sf \implies   \frac{ {(7 + 3 \sqrt{5} )}^{2} }{ {(7)}^{2}  -  {(3 \sqrt{5} )}^{2}  }  \\  \\  \sf \implies  \frac{ {(7)}^{2} +  {(3 \sqrt{5}) }^{2}   - 2 \times 7 \times 3 \sqrt{5} }{49 - 9(5)}  \\  \\ \sf \implies   \frac{49 + 9(5) - 42 \sqrt{5} }{49 - 45}  \\  \\ \sf \implies   \frac{49 + 45 - 42 \sqrt{5} }{4}  \\  \\  \sf \implies  \frac{94 - 42 \sqrt{5} }{4}  \\  \\ \sf \implies   \frac{2(47 - 21 \sqrt{5}) }{4}  \\  \\ \sf \implies    \frac{47 - 21 \sqrt{5} }{2}

 \large \fbox{ \fbox{ \sf \:   \frac{47 - 21 \sqrt{5} }{2}  \: }}

Similar questions