Math, asked by RKharini25, 11 months ago

rationalise the denominator 7+√3. /7-√3​

Answers

Answered by Anonymous
10

\huge\tt\orange{SoLutiOn:-}

 \sf\implies\:\frac{7 +  \sqrt{3} }{7 -  \sqrt{3} }  \\  \\ rationalizing \: the \: denominator \:  \\  \\\sf\implies\:  \frac{7 +  \sqrt{3} }{7 -  \sqrt{3} }  \times   \frac{7 +  \sqrt{3} }{7 +  \sqrt{3} }  \\  \\ \sf\implies\: \frac{ {(7 +  \sqrt{3}) }^{2} }{ {(7)}^{2}  -   {( \sqrt{3} )}^{2}  }  \\  \\\sf\implies\:  \frac{49 + 14 \sqrt{3}  + 3}{49 - 3}  \\  \\  \sf\implies\:\frac{52 + 14 \sqrt{3} }{46}  \\  \\  \sf\implies\:\frac{2(26 + 7 \sqrt{3}) }{46}  \\  \\ \sf\implies\: \frac{26 +  7\sqrt{3} }{23}

Answered by chaudharyvikramc39sl
1

Answer:

\frac{26+7\sqrt{3}}{23}

Step-by-step explanation:

Given Expression :

                          \frac{7+\sqrt3}{7-\sqrt3}

To Find :

Rationalize the denominator

Solution :

Given expression

                           \frac{7+\sqrt{3}}{7-\sqrt{3}}

denominator of the fraction is {7-\sqrt{3}}

and the conjugate of the denominator = 7+\sqrt3

multiply by 7+\sqrt3 on numerator and denominator on the fraction

                        \frac{7+\sqrt{3}}{7-\sqrt{3}}=\frac{7+\sqrt{3}}{7-\sqrt{3}}\  \text{x}\ \frac{7+\sqrt{3}}{7+\sqrt{3}}

                                 =\frac{(7+\sqrt3)^2}{(7+\sqrt3)(7-\sqrt3}

since we now that

(a+b)^2=a^2+b^2+2ab     and a^2-b^2=(a-b)(a+b)

using above inequalities we get

                              =\frac{49+3+14\sqrt3}{49-3}

                              =\frac{52+14\sqrt3}{46}

                              =\frac{26+7\sqrt3}{23}

Hence by rationalizing the expression we get

                                =\frac{26+7\sqrt3}{23}

#SPJ2

Similar questions