Math, asked by officialkaur, 1 month ago

rationalise the denominator: 7/(5 root 3 - (5 root 2?​

Answers

Answered by vipashyana1
1

\mathfrak{\huge{Answer:-}} \\ \bold{\frac{7}{5 \sqrt{3}  - 5 \sqrt{2} } } \\  =  \frac{7}{5 \sqrt{3} - 5 \sqrt{2}  }  \times  \frac{5 \sqrt{3}  + 5 \sqrt{2} }{5 \sqrt{3}  + 5 \sqrt{2} }  \\  =  \frac{7(5 \sqrt{3}  + 5 \sqrt{2}) }{(5 \sqrt{3}  - 5 \sqrt{2} )(5 \sqrt{3}  + 5 \sqrt{2} )}  \\   = \frac{7(5 \sqrt{3} + 5 \sqrt{2}  )}{ {(5 \sqrt{3}) }^{2}  -  {(5 \sqrt{2}) }^{2} }  \\  =  \frac{7(5 \sqrt{3} + 5 \sqrt{2} ) }{75 - 50}  \\  =  \frac{7(5 \sqrt{3} + 5 \sqrt{2} ) }{15}  \\\boxed {\boxed{\large{\bold{ \frac{7}{5 \sqrt{3} - 5 \sqrt{2}  } =  \frac{7(5 \sqrt{3}  + 5 \sqrt{2}) }{15}  }}}}

Similar questions