Math, asked by anish2164, 8 months ago

Rationalise the denominator 8/√5-√6​

Answers

Answered by Anonymous
29

\large{\underline{\underline{\mathfrak{Answer :}}}}

The correct answer is \sf{ 8 (\sqrt{5} + \sqrt{6})}.

\rule{200}{2}

\large{\underline{\underline{\mathfrak{Explanation :}}}}

As, we have to rationalise the denominator.

\sf{\implies \dfrac{8}{\sqrt{5} - \sqrt{6}}} \\ \\ \sf{\implies  \dfrac{8}{\sqrt{5} - \sqrt{6}} \times  \dfrac{\sqrt{5} + \sqrt{6}}{\sqrt{5} + \sqrt{6}}} \\ \\ \bf{\dag \ \ \ \ \ \ \ \ \ \ Using \ Equation  \ \ \ \ \ \ \ \ \ \ \dag} \\ \\ \large{\underline{\boxed{\bf{(a + b)(a - b) = a^2 - b^2}}}}

________________[Putting Values]

\sf{\implies \dfrac{8 (\sqrt{5} + \sqrt{6})}{(\sqrt{5})^2 - (\sqrt{6})^2}} \\ \\ \sf{\implies  \dfrac{8 (\sqrt{5} + \sqrt{6})}{5 - 6}} \\ \\ \sf{\implies  \dfrac{8 (\sqrt{5} + \sqrt{6})}{-1}} \\ \\ \sf{\implies 8 (\sqrt{5} + \sqrt{6})} \\ \\ \large{\underline{\boxed{\bf{ 8 (\sqrt{5} + \sqrt{6})}}}}

Answered by gunjanbaidyasl
0

Answer:

The answer is 8√6 - 8√5.

Step-by-step explanation:

To solve : \frac{8}{\sqrt{5} - \sqrt{6}  }

Concept : In order to rationalize  √a - √b in denominator, we multiply the numerator and denominator with √a + √b.

Formulas used : a² - b² = (a-b)(a+b)

Solution:

Step 1 : We multiply the numerator and denominator with √5 + √6.

\frac{8}{\sqrt{5} - \sqrt{6} }

Multiplying the numerator and denominator with √5 + √6

\frac{8(\sqrt{5} + \sqrt{6} )}{(\sqrt{5} - \sqrt{6})(\sqrt{5} + \sqrt{6} ) }.

Step 2 : Solve the denominator

\frac{8(\sqrt{5} + \sqrt{6} )}{(\sqrt{5} - \sqrt{6})(\sqrt{5} + \sqrt{6} ) }

= \frac{8(\sqrt{5} + \sqrt{6} )}{(\sqrt{5}) ^{2}  - (\sqrt{6}) ^{2} }

= \frac{8(\sqrt{5}+\sqrt{6})  }{5-6}

= \frac{8(\sqrt{5}+\sqrt{6})  }{-1}

= - 8(√5 - √6)

Step 3 : Simplify

- 8(√5 - √6)

= -8√5 + 8√6

= 8√6 - 8√5

So, the answer is 8√6 - 8√5.

#SPJ2

Similar questions