Math, asked by Imratlal, 1 year ago

rationalise the denominator 8 upon√3+√5

Answers

Answered by TheLifeRacer
19
Hey !!!

8 / √3 + √5

using rationalising process .

8 × (√3 - √5) / √3 + √5 × ( √3 - √5)

8( √3 - √5 ) / (√3)² - (√5)²

8 ( √3 - √5) / 3 - 5

8 ( √3 - √5 ) / -2

- 4 ( √3 - √5 ) = ( - 4√3 + 4√5)

or, ( 4√5 - 4√3 )

or, 4 ( √5 - √3) Answer

____________________________

Hope it helps you !!!

@Rajukumar111

DaIncredible: great explained bhai =D
DaIncredible: hehe nothing like that
Answered by DaIncredible
23
Hii !!

 \frac{8}{ \sqrt{3}  +  \sqrt{5} }  \\

On rationalizing the denominator we get,

 \frac{8}{ \sqrt{3} +  \sqrt{5}  }  \times  \frac{ \sqrt{3}   -  \sqrt{5} }{ \sqrt{3}  -  \sqrt{5} }  \\  \\  =  \frac{8 \sqrt{3}  - 8 \sqrt{5} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  =  \frac{8 \sqrt{3}  - 8 \sqrt{5} }{3 - 5}  \\  \\  =  \frac{8 \sqrt{3} - 8 \sqrt{5}  }{ - 2}  \\  \\  =   \frac{ - 8 \sqrt{3} + 8 \sqrt{5}  }{2}  \\  \\  =  - 4 \sqrt{3}  + 4 \sqrt{5}  \\  \\  = 4 \sqrt{5}  - 4 \sqrt{3}  \\  \\  = 4( \sqrt{5}  -  \sqrt{3} )

Hope this helps ☺

Imratlal: one mor question
Imratlal: you solve it
DaIncredible: what's the question ?
Imratlal: simplify the following √3-√2 whole square
DaIncredible: (√3)^2 + (√2)^2 + 2(√3)(√2) = 3 + 2 + 2√6 = 5 + 2√6
Imratlal: pehle jesen karna ye samaj nhi aa raha
DaIncredible: sir please better to post the question.. The users who knows will answer.
DaIncredible: ☺☺
Imratlal: explain the question
Imratlal: and ans
Similar questions