Math, asked by shivangigautam6649, 1 year ago

Rationalise the denominator and simplify 1 + √ 2 /3 + 2 √ 2

Answers

Answered by shivani3155
33

Answer:

answer is √2 - 1

Step-by-step explanation:

(1+√2)/(3 + 2√2)

= (1+√2)/(3+2√2) × (3-2√2)/(3-2√2)

= [(1+√2)(3-2√2)]/[(3)² - (2√2)²]

= [3 - 2√2 + 3 √2 - 4]/[9 - 8]

= [√2 - 1]/1

= √2 - 1

Answered by Anonymous
27

Answer:

\huge\bigstar\:\underline{\boxed{\tt \: 7 + 5 \sqrt{2}} } \:  \bigstar

Step-by-step explanation:

:\implies\:\sf \dfrac{1 + \sqrt{2}}{3  - 2 \sqrt{2}}

\\\\

:\implies\:\sf \dfrac{1 + \sqrt{2}}{3  - 2 \sqrt{2}}  \:  \times  \: \sf \dfrac{3 + 2 \sqrt{2}}{3  - 2 \sqrt{2}}

\\\\

:\implies\:\sf \dfrac{3 + 2\sqrt{2} \:  + \:  3 \sqrt{2} \: +   \:  2 \sqrt{4}  }{(3)^{2}  - (2\sqrt{2})^{2} }

\\\\

:\implies\:\sf \dfrac{3 + 5\sqrt{2} \:  + \:  2  \: \times  \:  \sqrt{2 \:  \times  \: 2}   }{9  \:  -  \: 4\:  \times  \: 2 }

\\\\

:\implies\:\sf \dfrac{3 \:  +  \: 5\sqrt{2} \:  + \:  2  \: \times  \:  2    }{9  \:  -  \: 4 \:  \times  \: 2 }

\\\\

:\implies\:\sf \dfrac{3  \: +  \: 5\sqrt{2} \:  + \: 4  }{9  \:  -  \: 8}

\\\\

:\implies\:\sf \dfrac{3  \: +  \: 5\sqrt{2} \:  + \: 4  }{1}

\\\\

: \implies {\underline{\boxed{\sf \: \: 7 + 5 \sqrt{2}}} }  \:  \:  \:  \bigg \lgroup \:  \bf{Required \: Answer} \:  \bigg \rgroup

Similar questions