Math, asked by znord3514, 9 months ago

Rationalise the denominator and simplify.​

Attachments:

Answers

Answered by BrainlyIAS
7

Answer

  • 7 + 5√2

\orange{\bigstar}  Given  \green{\bigstar}

\bullet \;\; \rm \dfrac{1+\sqrt{2}}{3-2\sqrt{2}}

\orange{\bigstar}  To Find  \green{\bigstar}

Simplified value of the given

\orange{\bigstar}  Solution  \green{\bigstar}

\rm \dfrac{1+\sqrt{2}}{3-2\sqrt{2}}\\\\

Rationalize the denominator ,

\to \rm \dfrac{1+\sqrt{2}}{3-2\sqrt{2}}\times \dfrac{3+2\sqrt{2}}{3+2\sqrt{2}}\\\\\to \rm \dfrac{(1+\sqrt{2})(3+2\sqrt{2})}{(3)^2-(2\sqrt{2})^2}\\\\\bf \because\ (a+b)(a-b)=a^2-b^2\\\\\to \rm \dfrac{3+2\sqrt{2}+3\sqrt{2}+4}{9-8}\\\\\to \rm 3+5\sqrt{2}+4\\\\\to \rm 7+5\sqrt{2}\ \; \bigstar

Answered by Anonymous
5

Answer:

\huge\bigstar\:\underline{\boxed{\tt \: 7 + 5 \sqrt{2}} } \:  \bigstar

Step-by-step explanation:

:\implies\:\tt \dfrac{1 + \sqrt{2}}{3  - 2 \sqrt{2}}

\\\\

:\implies\:\tt \dfrac{1 + \sqrt{2}}{3  - 2 \sqrt{2}}  \:  \times  \: \sf \dfrac{3 + 2 \sqrt{2}}{3  - 2 \sqrt{2}}

\\\\

:\implies\:\tt \dfrac{3 + 2\sqrt{2} \:  + \:  3 \sqrt{2} \: +   \:  2 \sqrt{4}  }{(3)^{2}  - (2\sqrt{2})^{2} }

\\\\

:\implies\:\tt \dfrac{3 + 5\sqrt{2} \:  + \:  2  \: \times  \:  \sqrt{2 \:  \times  \: 2}   }{9  \:  -  \: 4\:  \times  \: 2 }

\\\\

:\implies\:\tt \dfrac{3 \:  +  \: 5\sqrt{2} \:  + \:  2  \: \times  \:  2    }{9  \:  -  \: 4 \:  \times  \: 2 }

\\\\

:\implies\:\tt \dfrac{3  \: +  \: 5\sqrt{2} \:  + \: 4  }{9  \:  -  \: 8}

\\\\

:\implies\:\tt \dfrac{3  \: +  \: 5\sqrt{2} \:  + \: 4  }{1}

\\\\

: \implies {\underline{\boxed{\tt \: \: 7 + 5 \sqrt{2}}} } \:\:\:\:\:\bigg \lgroup \:  \bf{Required \: Answer} \:  \bigg \rgroup

Similar questions