Math, asked by Dhanesh74331, 1 year ago

rationalise the denominator and simplify √48+√32/√27-√18

Answers

Answered by FelisFelis
2

Answer:

The rationalization of the denominator is \frac{(20+8\sqrt{6})}{3}.

Step-by-step explanation:

Consider the provided expression.

\frac{\sqrt{48}+\sqrt{32}}{\sqrt{27}-\sqrt{18}}}

Rationalize the denominator by multiplying √27+√18 with numerator and denominator.

\frac{\sqrt{48}+\sqrt{32}}{\sqrt{27}-\sqrt{18}}}\times \frac{\sqrt{27}+\sqrt{18}}{\sqrt{27}+\sqrt{18}}

\frac{(\sqrt{48}+\sqrt{32})\times(\sqrt{27}+\sqrt{18})}{27-18}}

\frac{(4\sqrt{3}{+4\sqrt{2})}\times(3\sqrt{3}+3\sqrt{2})}{9}}

\frac{(4\sqrt{3}{+4\sqrt{2})}\times(\sqrt{3}+\sqrt{2})}{3}}

\frac{(12+4\sqrt{6}+4\sqrt{6}+8)}{3}

\frac{(20+8\sqrt{6})}{3}

Hence, the rationalization of the denominator is \frac{(20+8\sqrt{6})}{3}.

Similar questions