Math, asked by angelkiruba1048bapti, 10 months ago

rationalise the denominator and simplify 5√3+√2/√3+√2

Answers

Answered by sajjamaheswari02
21

Answer:

Mark this as brain list answer

Step-by-step explanation:

5√3+√2/√3+√2

5√2+√2/√3+√2×√3-√2/√3-√2

(√3-√2)(5√3+√2)/3-2

15+√6-5√6-2/1

15-4√6-2

=15-4√6-2

Answered by payalchatterje
1

Answer:

After rationalisation required answer is (13-4√6)

Step-by-step explanation:

Given,

 \frac{5 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

We want to rationalise the denominator

Here denominator of

 \frac{5 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

is (√3+√2) and numerator of

 \frac{5 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

is (5√3+√2)

We are multiplying denominator and numerator of

 \frac{5 \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

by (√3-√2)

So,

 \frac{(5 \sqrt{3} +  \sqrt{2} )( \sqrt{3}  -  \sqrt{2})  }{ \sqrt{3}  +  \sqrt{2} ( \sqrt{3} -  \sqrt{2})  }  \\  =  \frac{5 \times 3 - 5 \sqrt{6} +  \sqrt{6}  - 2 }{ {( \sqrt{3} )}^{2} - ( { \sqrt{2}) }^{2}  }  \\  =  \frac{15 - 4 \sqrt{6}  - 2}{3 - 2}  \\  =  \frac{13 - 4 \sqrt{6} }{1}  \\  = 13 - 4 \sqrt{6}

Here applied formulas are

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  \sqrt{x}  \times  \sqrt{y}  =  \sqrt{xy}  \\  \sqrt{x}  \times  \sqrt{x}  = x

This is a problem of power of indices.

Some important formulas of Power of indices :

{x}^{0}  = 1 \\  {x}^{1}  = x \\  {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}  \\  \frac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b} \\  {x}^{ {y}^{a} }   =  {x}^{ya}  \\  {x}^{ - 1}  =  \frac{1}{x}  \\  {x}^{a}  \times  {y}^{a}  =  {(xy)}^{a}

Know more about Power of indices,

1.https://brainly.in/question/21620304

2.https://brainly.in/question/10752814

#SPJ2

Similar questions