Math, asked by Dhruv11Pratap, 1 year ago

rationalise the denominator and simplify under root 7 + under root 2 by 9 + 2 under root 14

Answers

Answered by ShuchiRecites
41
Hello Mate!

 \frac{ \sqrt{7} +  \sqrt{2}  }{9 + 2 \sqrt{14} }  \\  \\ rationalize \\  \\  \frac{ \sqrt{7} +  \sqrt{2}  }{9 + 2 \sqrt{14} }  \times  \frac{9 - 2 \sqrt{14} }{9 - 2 \sqrt{14} }  \\  \frac{9 \sqrt{7} - 2 \sqrt{98}  + 9 \sqrt{2}  - 2 \sqrt{28}  }{81 - 56}  \\  \sqrt{98 }  =  \sqrt{2  \times 7 \times 7}  = 7 \sqrt{2}  \\  \sqrt{28}  =  \sqrt{2 \times 2 \times 7}  = 2 \sqrt{7}  \\  \frac{9 \sqrt{7}  - 14 \sqrt{2} + 9 \sqrt{2}   - 4 \sqrt{7} }{25}  \\  \frac{5 \sqrt{7}  - 5 \sqrt{2} }{25}  =  \frac{5 \sqrt{7} }{25}  -  \frac{5 \sqrt{2} }{25}  \\  \frac{ \sqrt{7} -  \sqrt{2}  }{5}

Hope it helps☺!

ShuchiRecites: ur wlcm dear
ShuchiRecites: thanks for brainliest
Answered by SerenaBochenek
13

Answer:

\text{The rationalization is }\frac{\sqrt7-\sqrt2}{5}

Step-by-step explanation:

We have to rationalize the given expression

\frac{\sqrt7+\sqrt2}{9+2\sqrt{14}}

Expression: \frac{\sqrt7+\sqrt2}{9+2\sqrt{14}}

Rationalizing, we get

\frac{\sqrt7+\sqrt2}{9+2\sqrt{14}}\times \frac{9-2\sqrt{14}}{9-2\sqrt{14}}

=\frac{(\sqrt7+\sqrt2)(9-2\sqrt{14})}{(9+2\sqrt{14})(9-2\sqrt{14})}

=\frac{9\sqrt7-2\sqrt{98}+9\sqrt2-2\sqrt{28}}{(9^2-(2\sqrt{14})^2}

=\frac{9\sqrt7-14\sqrt{2}+9\sqrt2-4\sqrt{7}}{81-56}

=\frac{5\sqrt7-5sqrt2}{25}

=\frac{\sqrt7-\sqrt2}{5}

which is required simplification.

Similar questions