Math, asked by GargiRana, 2 months ago

Rationalise the denominator ‼️... Don't spam only correct answer...❓❔​

Attachments:

Answers

Answered by Anonymous
17

Answer :-

\implies\sf\dfrac{\sqrt3 + \sqrt2}{\sqrt3 - \sqrt2} + \dfrac{\sqrt3 - \sqrt2}{\sqrt3 + \sqrt2}

Taking the LCM :-

\implies\sf\dfrac{(\sqrt3 + \sqrt2)(\sqrt3 + \sqrt2) +(\sqrt3 - \sqrt2)(\sqrt3 - \sqrt2) }{(\sqrt3 - \sqrt2)(\sqrt3 + \sqrt2)}

\implies\sf\dfrac{(\sqrt3 + \sqrt2)^2 + (\sqrt3 - \sqrt2)^2}{(\sqrt3 - \sqrt2)(\sqrt3 + \sqrt2)}

  • \sf(a + b)^2 = a^2 + b^2 + 2ab
  • \sf(a - b)^2 = a^2 + b^2 - 2ab
  • \sf(a + b)(a - b) = a^2 - b^2

\implies\sf\dfrac{(\sqrt{3})^2 + (\sqrt{2})^2 +  2 \times \sqrt3 \times  \sqrt2 + (\sqrt{3})^2 + (\sqrt{2})^2  - 2 \times \sqrt3 \times  \sqrt2}{(\sqrt{3})^2 - (\sqrt{2})^2}

\implies\sf\dfrac{3 + 2 + \cancel{2\sqrt6} + 3 + 2 - \cancel{2\sqrt6}}{3 - 2}

\implies\sf\dfrac{ 5 + 5 }{1}

\implies\sf10

\boxed{\sf\dfrac{\sqrt3 + \sqrt2}{\sqrt3 - \sqrt2} + \dfrac{\sqrt3 - \sqrt2}{\sqrt3 + \sqrt2} = 10}

Answered by Anonymous
2

Answer:

Answer:

The change in velocity in unit time is called acceleration.

Acceleration is a vector.

The direction of acceleration will be in the direction of change in velocity.

Its SI unit is metre / second ² abbreviated as m/s²

Similar questions