Math, asked by mazumderanik2, 9 months ago

rationalise the denominator.. help me by solving​

Attachments:

Answers

Answered by MysticPetals
7

Answer:-

x + √(x² - y²)

__________

y

Solution : -

(x+y) +(x-y) (x+y) + (x-y)

___________ × ___________

(x+y) -(x-y) (x+y) + (x-y)

(((x+y) +(x-y))²

______________________

(√(x+y - √(x-y) ( √(x+y +√(x-y)

2x + 2 (x² - y²)

_____________

2y

x + √(x² - y²)

__________

y

For further information refer the attachment !

Attachments:
Answered by Tomboyish44
19

Answer:

\rm \dfrac{x + \sqrt{x^2 - y^2}}{y}

Explanation:

We have to rationalize:

\rm \Longrightarrow \dfrac{\sqrt{x + y} + \sqrt{x - y}}{\sqrt{x + y} - \sqrt{x - y}}

To rationalize the denominator, let's multiply both the numerator & denominator by the conjugate of \rm \sqrt{x + y} - \sqrt{x - y} which is \rm \sqrt{x + y} + \sqrt{x - y}.

\rm \Longrightarrow \dfrac{\sqrt{x + y} + \sqrt{x - y}}{\sqrt{x + y} - \sqrt{x - y}} \times \dfrac{\sqrt{x + y} + \sqrt{x - y}}{\sqrt{x + y} + \sqrt{x - y}}

Identities applied:

(a + b) (a + b) = (a + b)²

(a + b) (a - b) = a² - b²

\rm \Longrightarrow \dfrac{\Big(\sqrt{x + y} + \sqrt{x - y} \Big)^2}{\Big(\sqrt{x + y}\Big)^2 - \Big(\sqrt{x - y} \Big)^2}

Identities applied:

(a + b)² = a² + b² + 2ab

\rm \Longrightarrow \dfrac{\Big(\sqrt{x + y}\Big)^2 + \Big(\sqrt{x - y} \Big)^2 + 2\Big(\sqrt{x + y}\Big)\Big(\sqrt{x - y}\Big)}{x + y - \Big(x - y\Big)}

Identities applied:

(a + b)(a - b) = a² - b²

\rm \Longrightarrow \dfrac{x + y + x - y + 2\Big(\sqrt{x^2 - y^2}\Big)}{x + y - x + y}

\rm \Longrightarrow \dfrac{2x + 2\Big(\sqrt{x^2 - y^2}\Big)}{2y}

Take 2 as a common integer from the numerator.

\rm \Longrightarrow \dfrac{2\Big(x + \sqrt{x^2 - y^2}\Big)}{2y}

2 gets cancelled.

\rm \Longrightarrow \dfrac{x + \sqrt{x^2 - y^2}}{y}

Hence rationalized.

Similar questions