Math, asked by laggarwal171, 1 month ago

rationalise the denominator in. √2/2+√2​

Answers

Answered by Salmonpanna2022
27

Correct Question:-

 \mathcal{Rationalise \:  the \:  denominator \:  of} \:  \:  \:  \frac{2}{2 +  \sqrt{2} }  \\  \\

What to do:-

 \mathrm{To \:  rationalise  \: the \:  denominator.} \\  \\

Solution:-

Let's solve the problem

we have,

 \frac{2}{2 +  \sqrt{2} }  \\

The denominator is 2+√2. Multiplying the numerator and denominator by 2-√2, We get

⟹ \frac{2}{2 +  \sqrt{2} }  \times  \frac{2 -  \sqrt{2} }{2 -  \sqrt{2} }  \\  \\

⟹ \frac{2(2 -  \sqrt{2}) }{(2 +  \sqrt{2} )(2 -  \sqrt{2} )}  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

⟹ \frac{2(2 -  \sqrt{2}) }{(2 {)}^{2}  - ( \sqrt{2}  {)}^{2} }  \\  \\

⟹ \frac{2(2 -  \sqrt{2} )}{4 - 2}  \\  \\

⟹ \frac{ \cancel{2}(2 -  \sqrt{2}) }{ \cancel{2}}  \\  \\

⟹2 -  \sqrt{2}  \\

Hence, the denominator is rationalised.

Answer:-

2 -  \sqrt{2}  \\  \\

  • I hope it's help you...☺

Similar questions