Math, asked by lujaynuoz8z58, 1 year ago

rationalise the denominator of 1 / 1 + root2-root3

Answers

Answered by hotelcalifornia
170

Answer:

After rationalising the given denominator, we get the answer as

\frac { \sqrt { 2 } + 2 + \sqrt { 6 } } { 4 }

Explanation:

The given expression is,

\frac { 1 } { ( 1 + \sqrt { 2 } - \sqrt { 3 } ) }

Rationalising the denominator

\begin{array} { c } { \frac { 1 } { ( 1 + \sqrt { 2 } ) - \sqrt { 3 } } \times \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { ( 1 + \sqrt { 2 } ) + \sqrt { 3 } } } \\\\ { = \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { \left( ( 1 + \sqrt { 2 } ) ^ { 2 } - ( \sqrt { 3 } ) ^ { 2 } \right) } } \end{array}

(As (a^2-b^2) = (a+b)(a-b) )

\begin{aligned} = & \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { ( ( 1 + 2 + 2 \sqrt { 2 } ) - 3 ) } \\\\ = & \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { 3 + 2 \sqrt { 2 } - 3 } \\\\ & = \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { 2 \sqrt { 2 } } \end{aligned}

Multiply and divide by \sqrt{2}

= \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { 2 \sqrt { 2 } } \times \frac { \sqrt { 2 } } { \sqrt { 2 } }

After rationalising the given denominator, we get the answer as

= \frac { \sqrt { 2 } + 2 + \sqrt { 6 } } { 4 }

Answered by chandanahmchandana95
9

Answer:

this is answer u r question

Attachments:
Similar questions