Math, asked by kartik65321, 1 month ago

Rationalise the denominator of 1/2+√3.​

Answers

Answered by BladeGirl
1

Answer:

Hey!! Ur answer:

 \frac{1}{2 +  \sqrt{3} }  \\  =  \frac{1(2 -  \sqrt{3}) }{ (2 +  \sqrt{3} )(2 -  \sqrt{3}) }  \\  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  = 2 -  \sqrt{3}

Step-by-step explanation:

Hope it helps u!!Please mark me Brainliest

Keep Rocking~

♛┈⛧┈┈•༶BladeGirl༶•┈┈⛧┈♛

Answered by FiercePrince
25

⠀⌬⠀ Rationalise the Denominator of :

\qquad \qquad \bigstar \sf \:\:\dfrac{1}{2\:+\:\sqrt{3}}\:\:\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad \dashrightarrow  \sf \:\:\dfrac{1}{2\:+\:\sqrt{3}}\:\:\\\\

⠀⠀▪︎ In order to Rationalise the Denominator we've to Multiply it's both numerator and denominator by it's Rationalising Factor , & The Rationalising factor of Given is ( 2 - 3 ) .

\qquad \bigstar \:\:\underline {\purple {\pmb{\sf \:By\:Multiplying \:both\:the \:Numerator \:and\:\:Denominator \:by \: \: \big( 2 -\sqrt{3}\:\big) \::\:}}}\\\\

 \qquad \dashrightarrow  \sf \:\:\dfrac{\big( 2 -\sqrt{3}\:\big)}{2\:+\:\sqrt{3}}\:\:\\\\\\ \qquad \dashrightarrow  \sf \:\:\dfrac{1\: \big( 2 -\sqrt{3}\:\big)}{\big( 2 +\sqrt{3}\:\big)\:\big( 2 -\sqrt{3}\:\big)\:}\:\:\\\\ \\  \qquad \dashrightarrow  \sf \:\:\dfrac{\big( 2 -\sqrt{3}\:\big)}{\big( 2 +\sqrt{3}\:\big)\:\big( 2 -\sqrt{3}\:\big)\:}\:\:\\\\ \\ \qquad \dashrightarrow  \sf \:\:\dfrac{ 2 -\sqrt{3}\:}{\big( 2\big)^2 - \big( \sqrt{3}\:\big)^2\:\:\big)\:}\:\:\qquad \because \:\bigg\lgroup \sf{ \:(\:a^2\:-\:b^2\:)\:=\:( a + b ) \:( a - b ) }\bigg\rgroup\\\\ \\ \qquad \dashrightarrow  \sf \:\:\dfrac{ 2 -\sqrt{3}\:}{4 - \:\:3\:}\:\:\\\\ \\  \qquad \dashrightarrow  \sf \:\:\dfrac{ 2 -\sqrt{3}\:}{\:1\:}\:\:\\\\ \\ \qquad \dashrightarrow  \sf \:\:\underline {\boxed{\pmb{\frak{\purple { Rationalised\:Form\:=\: 2-\sqrt{3}\:}}}}}\:\:\bigstar \\\\ \\

\therefore \:\sf \:\underline { Hence,  \:The \:Rationalised \:form \:is \: \pmb{\bf 2 - \sqrt{3}\:\:}\:.}\\

Similar questions