Math, asked by varsharekhe, 1 month ago

Rationalise the denominator of 1/√3-√2​

Answers

Answered by DaiwikPatel130806
0

Step-by-step explanation:

\frac{1}{\sqrt{3}-\sqrt{2}  } =\frac{1}{\sqrt{3}-\sqrt{2}  }*\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\=\frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3})^{2}-(\sqrt{2} )^{2}   } = \frac{\sqrt{3}+\sqrt{2}}{3-2} =\frac{\sqrt{3}+\sqrt{2}}{1} =\sqrt{3}+\sqrt{2}

Answer = √3+√2

Hope this answer helps you.

Please mark this answer as Brainliest if it helped you.

Answered by Sen0rita
11

S O L U T I O N :

 \:

 \sf :  \implies \:  \dfrac{1}{ (\sqrt{3} -  \sqrt{2} ) }

 \:

 \sf \underline{Multiply \: numerator \: and \: denominator \: with \:    \bold{(  \sqrt{3}   +  \sqrt{2} )}.}

 \:

 \sf :  \implies \:  \dfrac{1}{ (\sqrt{3}  -  \sqrt{2}) }  \times  \dfrac{ (\sqrt{3}  +  \sqrt{2}) }{ (\sqrt{3} +  \sqrt{2} ) }

 \:

 \sf {\underline{As \: we \: know \: that \:  \bold{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}}

 \:

 \sf  :  \implies \:  \dfrac{( \sqrt{3} +  \sqrt{2} ) }{   (\sqrt{3}) {}^{2}  -  (\sqrt{2}  ) {}^{2}   }

 \:

 \sf :  \implies \:  \dfrac{( \sqrt{3} +  \sqrt{2} ) }{(3 - 2)}

 \:

 \sf :  \implies \:  \dfrac{( \sqrt{3} +  \sqrt{2} ) }{1}

 \:

 \sf :  \implies \: \bold{( \sqrt{3}  +  \sqrt{2} )}

 \:

\sf\therefore{\underline{Hence, \: the \: answer \: is \:  \bold{( \sqrt{3} +  \sqrt{2})  }.}}

Similar questions