Math, asked by Avinashankur, 1 year ago

Rationalise the denominator of 1/√5+√2.

Answers

Answered by ShuchiRecites
761
Hello Mate!

 \frac{1}{ \sqrt{5} +  \sqrt{2}  }  \\ rationalization \\  \frac{1}{ \sqrt{5}  +  \sqrt{2} }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }  \\  \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}  =  \frac{ \sqrt{5} -  \sqrt{2}  }{3}
Hope it helps☺!
Answered by hukam0685
4

\bf \frac{1}{ \sqrt{5} +  \sqrt{2}  }  =   \frac{ \sqrt{5} -  \sqrt{2}  }{ 3} \\

Given:

  •  \frac{1}{ \sqrt{5} +  \sqrt{2}  }  \\

To find:

  • Rationalize the denominator.

Solution:

Concept to be used:

Rationalization: It is used to free the denominator from any radical sign.

For that, multiply and divide the fraction with RF of denominators.

  • if denominator is a +  \sqrt{b} then, RF factor is a -  \sqrt{b}  \\ .

Step 1:

Find the RF.

As denominator is  \sqrt{5}  +  \sqrt{2}  \\

then rationalization factor is  \bf \sqrt{5}  -  \sqrt{2}  \\

Step 2:

Multiply and divide by RF.

 \frac{1}{ \sqrt{5} +  \sqrt{2}  }  = \frac{1}{ \sqrt{5} +  \sqrt{2}  } \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  -   \sqrt{2}  } \\

or

Apply identity

\bf (x - y)(x + y) =  {x}^{2}  -  {y}^{2}  \\

So,

 \frac{1}{ \sqrt{5} +  \sqrt{2}  }  =   \frac{ \sqrt{5} -  \sqrt{2}  }{  {( \sqrt{5} )}^{2}  -  ( { \sqrt{2} )}^{2}  } \\

or

 \frac{1}{ \sqrt{5} +  \sqrt{2}  }  =   \frac{ \sqrt{5} -  \sqrt{2}  }{ 5- 2} \\

or

\frac{1}{ \sqrt{5} +  \sqrt{2}  }  =   \frac{ \sqrt{5} -  \sqrt{2}  }{ 3} \\

Thus,

Rationalization of  \frac{1}{ \sqrt{5} +  \sqrt{2}  }\\ is  \bf \frac{ \sqrt{5}  -  \sqrt{2} }{3}  \\

Learn more:

1) Rationalize the denominator

 \bf \dfrac{√6}{√3+√2}

https://brainly.in/question/48198466

2) if x = 3 + √8. find the value of x^2 + 1/x^2

https://brainly.in/question/4359249

Similar questions