Math, asked by amrutajoshi108, 8 months ago

rationalise the denominator of 1/√5-√3???

Answers

Answered by llSecreTStarll
65

Solution :

For rationalising the denominator we should multiply the numerator and the denominator by the denominator but firstly we should change the sign .

if the sign is (+) then change it into (-) if the sign is (-) then change it into (+).

›› 1/√5 - √3

  • Multiply the numerator and denominator by √5 + √3

›› (1/√5 - √3) × (√5 + √3)/(√5 + √3)

›› (√5 + √3)/(√5 - √3)(√5 + √3)

›› (√5 + √3)/(√5² - √3²)

›› (√5 + √3)/(5 - 3)

›› (√5 + √3)/2

Answered by anjalin
15

Answer:

The rationalization form of \frac{1}{\sqrt{5} -\sqrt{3} }\\\\ is \frac{\sqrt{5} +\sqrt{3} }{2 }

Step-by-step explanation:

Given:

\frac{1}{\sqrt{5} -\sqrt{3} }\\\\

We need to rationalize the denominator

So we take as

=\frac{1}{\sqrt{5} -\sqrt{3} }*\frac{\sqrt{5} +\sqrt{3} }{\sqrt{5} +\sqrt{3} }\\\\=\frac{\sqrt{5} +\sqrt{3} }{5-3 }\\\\=\frac{\sqrt{5} +\sqrt{3} }{2 }

Similar questions