Math, asked by preetisaroj6386, 6 months ago

Rationalise the denominator of 1/6+root5

Answers

Answered by bhavanaRS
0

Answer:

6-√5/31

mark as brainliest

Step-by-step explanation:

Answered by Flaunt
61

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

Rationalise the denominator of 1/6+root5

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

 \bold{=  >  \frac{1}{6 +  \sqrt{5} }}

 \bold{=  >  \frac{1}{6 +  \sqrt{5} }  \times  \frac{6 -  \sqrt{5} }{6 -  \sqrt{5} }}

Here ,this identity is used :-

\bold{\boxed{\pink{(x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}}

 \bold{=  >  \frac{6 -  \sqrt{5} }{ {(6)}^{2}  -   {( \sqrt{5}) }^{2} } }

 \bold{=  >  \frac{6 -  \sqrt{5} }{36 - 5}}

 \bold{=  >  \frac{6 -  \sqrt{5} }{31}}

\huge\mathcal{Learn\:more:}

  • The result we get e.g.=6-√5/31 is a rational number as it is in the form of a rational number where ,q(denominator) is not equal to 0
  • If any value is negative inside root say √-5 then we can replace - sign by 'i' (iota)

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions