Math, asked by deepesh4079, 9 months ago

Rationalise the denominator of 1/√7+√6-√13​

Answers

Answered by shaileshmaurya132
1

Answer:

I'm weak in maths I don't help you

Answered by tahseen619
15

Answer:

 \dfrac{7 \sqrt{6}  + 6 \sqrt{7}  +  \sqrt{546} }{84}

Step-by-step explanation:

By Rationalizing the denominator , I get the answer .

 \dfrac{1}{ \sqrt{7}   +  \sqrt{6} -  \sqrt{13}  }  \\  \\ = \frac{1 \times ( \sqrt{7 } +  \sqrt{6}  +  \sqrt{13)}  }{( \sqrt{7} +  \sqrt{6}   -  \sqrt{13})( \sqrt{7} +  \sqrt{6} -  \sqrt{13}    )}  \\  \\ = \frac{ \sqrt{7}  +  \sqrt{6}  +  \sqrt{13} }{ {( \sqrt{7}  +  \sqrt{6})^{2}  -  ( \sqrt{13}) }^{2} }  \\  \\  = \frac{ \sqrt{7 }  +  \sqrt{6} +  \sqrt{13}  }{ { (\sqrt{7} )}^{2}  +  {( \sqrt{6}) }^{2}  + 2 \sqrt{6}. \sqrt{7}   - 13}  \\  \\ = \frac{ \sqrt{7} +  \sqrt{6}  +  \sqrt{13}  }{7 + 6  +  2 \sqrt{42} - 13 }  \\  \\ = \frac{ \sqrt{7}  +  \sqrt{6}  +  \sqrt{13} }{13 - 13 + 2 \sqrt{42} }  \\  \\ = \frac{(\sqrt{7}  +  \sqrt{6} +  \sqrt{13} ) \sqrt{42}  }{2 \sqrt{42}  \times  \sqrt{ 42}}  \\  \\  =\frac{ \sqrt{7 \times 42}  +  \sqrt{6 \times 42}  +  \sqrt{13 \times 42} }{2 \times 42}  \\  \\ = \frac{7 \sqrt{6}  + 6 \sqrt{7}  +  \sqrt{546} }{84}

Similar questions