Math, asked by shanu1532, 1 year ago

rationalise the denominator of 1 by 7+4root 3

Answers

Answered by pulakmath007
5

\displaystyle \sf{ \frac{1}{7 + 4 \sqrt{3} }   = 7 - 4 \sqrt{3}  }

Given :

The expression

\displaystyle \sf{ \frac{1}{7 + 4 \sqrt{3} }   }

To find :

To rationalize the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ \frac{1}{7 + 4 \sqrt{3} }   }

Step 2 of 2 :

Rationalize the denominator

\displaystyle \sf{ \frac{1}{7 + 4 \sqrt{3} }   }

\displaystyle \sf{  = \frac{(7 - 4 \sqrt{3}) }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3}) }   }

\displaystyle \sf{  = \frac{(7 - 4 \sqrt{3}) }{ {7}^{2}  -  {(4 \sqrt{3} )}^{2} }   }

\displaystyle \sf{  = \frac{(7 - 4 \sqrt{3}) }{49 - 48}   }

\displaystyle \sf{  = \frac{(7 - 4 \sqrt{3}) }{1}   }

\displaystyle \sf{  = 7 - 4 \sqrt{3} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions