Math, asked by devil834, 1 year ago

rationalise the denominator of 1 ÷ root7 +root6-root12​

Answers

Answered by pratyush4211
11

 \frac{1}{( \sqrt{7} +  \sqrt{6}) -  \sqrt{12}   }

Rationalising Factor of

( \sqrt{7 }  +  \sqrt{6} ) -  \sqrt{12 }  = ( \sqrt{7}  +  \sqrt{6} ) +  \sqrt{12}

Multiply Both Numerator and Denominator with Rationalising Factor.

 \frac{1( \sqrt{7}  +  \sqrt{6}) +  \sqrt{12}  }{[( \sqrt{7} +  \sqrt{6} )  -  \sqrt{12}][( \sqrt{7}  +  \sqrt{6}  ) +  \sqrt{12} ]}

We know a²-b²=(a+b)(a-b)

 \frac{ \sqrt{7}  +  \sqrt{6} +  \sqrt{12}  }{( \sqrt{7} +  \sqrt{6}) {}^{2} -  { \sqrt{12} }^{2}    }  \\  \\

We know (a+b)²=a²+b²+2ab

 \frac{ \sqrt{7} +  \sqrt{6}   +  \sqrt{12} }{(  { \sqrt{7} }^{2}  +  { \sqrt{6} }^{2} + 2 \sqrt{7 \times 6}   ) -  12}  \\  \\  \frac{ \sqrt{7} +  \sqrt{6} +  \sqrt{12}   }{7 + 6 + 2 \sqrt{42}  - 12}  \\  \\  \frac{ \sqrt{7}  +  \sqrt{6} +  \sqrt{12}  }{13 - 12 +  2\sqrt{42} }  \\  \\  \frac{ \sqrt{7} +  \sqrt{6} +  \sqrt{12}   }{2 \sqrt{42} }

√42 is Irrational Number Multiply Both Numerator and Denominator with √42

 \frac{( \sqrt{7}  +  \sqrt{6}  +  \sqrt{12}) \times  \sqrt{42}  }{2 \sqrt{42}   \times  \sqrt{42} }  \\  \\  \frac{ \sqrt{7 \times 42} +  \sqrt{6 \times 42}   +  \sqrt{42  \times 12} }{2 \times 42}  \\  \\  \frac{ \sqrt{7 \times 7 \times 6}  +  \sqrt{6 \times 6 \times 7}  +  \sqrt{6 \times 7 \times 6 \times 2} }{84}  \\  \\  \frac{7 \sqrt{6} + 6 \sqrt{7} + 6 \sqrt{14}   }{84}


pratyush4211: check
Similar questions