Math, asked by maths217, 1 year ago

rationalise the denominator of 1 upon 2 + root 3

Answers

Answered by MaheswariS
21

\underline{\textbf{Given:}}

\mathsf{\dfrac{1}{2+\sqrt{3}}}

\underline{\textbf{To rationalize:}}

\mathsf{The\;denominator\;of\;\dfrac{1}{2+\sqrt{3}}}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\mathsf{Conjugate\;of\;a+\sqrt{b}\;is\;a-\sqrt{b}}

\mathsf{Consider,}

\mathsf{\dfrac{1}{2+\sqrt{3}}}

\textsf{Multiply both numerator and denominator by}\;\mathsf{2-\sqrt{3}}

\mathsf{=\dfrac{1}{2+\sqrt{3}}{\times}\dfrac{2-\sqrt{3}}{2-\sqrt{3}}}

\textsf{Using the identity,}

\boxed{\mathsf{(a-b)(a+b)=a^2-b^2}}

\mathsf{=\dfrac{2-\sqrt{3}}{2^2-(\sqrt{3})^2}}

\mathsf{=\dfrac{2-\sqrt{3}}{4-3}}

\mathsf{=\dfrac{2-\sqrt{3}}{1}}

\mathsf{=2-\sqrt{3}}

\underline{\textbf{Answer:}}

\boxed{\mathsf{\dfrac{1}{2+\sqrt{3}}=2-\sqrt{3}}}

Answered by aaloksingh468
2

Step-by-step explanation:

Hope this help you.

The answer of the question is 2-√3

Attachments:
Similar questions