Math, asked by cr739, 9 months ago

Rationalise the denominator of 14/√108-√96+√192-√54​

Answers

Answered by rishu6845
22

Answer:

 \boxed{ \huge{ \pink{ \dfrac{2 \sqrt{3}  +  \sqrt{6} }{3} }}}

Step-by-step explanation:

 \bold { \underline{ \red{Given}}} \longrightarrow \\  \dfrac{14}{ \sqrt{108} -  \sqrt{96}  +  \sqrt{192}  -  \sqrt{54}  }

 \bold{ \underline{ \red{To \: find}}} \longrightarrow \\ ratioalization \: of \: given \: fraction

 \bold{ \underline{\red{Concept \: used}}} \longrightarrow \\   \bold{ \boxed{ \blue{ \large{{x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}}}

 \bold{ \underline{ \red{Solution}}} \longrightarrow \\  \dfrac{14}{ \sqrt{108} -  \sqrt{96}  +  \sqrt{192} -  \sqrt{54}   }  \\  =  \dfrac{14}{ \sqrt{36 \times 3} -  \sqrt{16 \times 6} +  \sqrt{64 \times 3}  -  \sqrt{9 \times 6}   }  \\  =  \dfrac{14}{6 \sqrt{3}  - 4 \sqrt{6} + 8 \sqrt{3} - 3 \sqrt{6}   }   \\ =  \dfrac{14}{14 \sqrt{3} - 7 \sqrt{6}  }  \\  =  \dfrac{14}{7(2 \sqrt{3} -  \sqrt{6}  )}  \\  =  \dfrac{2}{2 \sqrt{3} -  \sqrt{3}   \sqrt{2} }   \\  =  \dfrac{2}{ \sqrt{3}(2 -  \sqrt{2} ) }  \\  =  \dfrac{2(2 +  \sqrt{2}) }{ \sqrt{3}(2 -  \sqrt{2})(2 +  \sqrt{2}  ) }  \\  =  \dfrac{2 \sqrt{3} (2 +  \sqrt{2} )}{ \sqrt{3} \sqrt{3}  \:  \:  ( {(2)}^{2}  -  {( \sqrt{2}) }^{2}) }  \\  =  \dfrac{2(2 \sqrt{3}  +  \sqrt{6}) }{3(4 - 2)}  \\  =  \dfrac{2(2 \sqrt{3} +  \sqrt{6} ) }{3 ( 2)}  \\  =  \dfrac{2 \sqrt{3} +  \sqrt{6}  }{3}

Answered by Anonymous
1

Answer:

Step-by-step explanation:

miss uhhhhhhhhhhhh Rishabh

Rishu ki malika here !!!!

see in the attachment

Attachments:
Similar questions