Math, asked by hitesh1924, 9 months ago


: Rationalise the denominator of
√2+√5/√2-√5​

Answers

Answered by Anonymous
2

\huge{\mathcal{\underline{\underline{\blue{ Question : }}}}}

Rationalise the denominator of √2 + √5/√2 - √5

\huge{\mathcal{\underline{\underline{\blue{ Solution : }}}}}

Given that,

Rationalise the denominator of √2 + √5/√2 - √5

Let,

\rm\:\implies \frac{\sqrt{2} + \sqrt{5} }{\sqrt{2} - \sqrt{5}}

  • Rationalise the denominator with √2 + √5

\rm\:\implies \frac{\sqrt{2} + \sqrt{5} }{\sqrt{2} - \sqrt{5}} \times \frac{\sqrt{2} + \sqrt{5}}{\sqrt{2} + \sqrt{5}}

\rm\:\implies \frac{(\sqrt{2} + \sqrt{5})^{2}}{(\sqrt{2} - \sqrt{5})(\sqrt{2} + \sqrt{5})}

  • (a + b)² = a² + b² + 2ab
  • (a + b)(a - b) = a² - b²

\rm\:\implies \frac{(\sqrt{2})^{2} + (\sqrt{5})^{2} + 2(\sqrt{2})(\sqrt{5})}{(\sqrt{2})^{2} - (\sqrt{5})^{2}}

\rm\:\implies \frac{2 + 5 + 2\sqrt{10}}{2 - 5}

\rm\:\implies \frac{7 + 2\sqrt{10}}{-3}

\underline{\boxed{\bf{\purple{ \therefore \frac{\sqrt{2} + \sqrt{5}}{\sqrt{2} - \sqrt{2} - \sqrt{5}} = - \frac{7 + 2\sqrt{10}}{3}}}}}\:\orange{\bigstar}

Similar questions