Math, asked by ruddu1802, 9 months ago

Rationalise the denominator of
2 / √5+ √3+2

Answers

Answered by wazkarani143
1
  •  \sqrt{5 +  \sqrt{3 + 2 \\ } }
  •  \sqrt{5 +  \sqrt{5} }
  • root over and will cancel
  • Answer:

so .. .1/10 where 10 is denominator

Answered by abhijeet6574
1

Answer:

 \frac{2}{ \sqrt{5} +  \sqrt{3} + 2  }  \\  =  \frac{2}{( \sqrt{5})  + ( \sqrt{3} + 2) } \\  =  \frac{2}{( \sqrt{5})  + ( \sqrt{3} + 2) } \times \frac{(\sqrt{5})   -  ( \sqrt{3} + 2)}{( \sqrt{5})   -  ( \sqrt{3} + 2) } \\  =  \frac{2 \sqrt{5} - 2 \sqrt{3}  - 4 }{ {( \sqrt{5}) }^{2}  -  {( \sqrt{3} + 2) }^{2} }  \\  =    \frac{2 \sqrt{5}  - 2 \sqrt{3} - 4 }{5 - 3 - 4 - 4 \sqrt{3} }  \\  =  \frac{2( \sqrt{5} -  \sqrt{3}) - 4  }{ - 2 - 4 \sqrt{3} }  \\  =  \frac{2( \sqrt{5}  -  \sqrt{3}) - 4 }{ - 2(1 +  \sqrt{3}) }  \\  =   \frac{( \sqrt{3} -  \sqrt{5}) + 2  }{1 +  \sqrt{3} }  \\   = \frac{( \sqrt{3} -  \sqrt{5}) + 2  }{1 +  \sqrt{3} }

rest it is in simplified form and youcan solve it.

Hope it helps till here

Similar questions